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Abstract
Endophytic fungi are increasingly being considered for their ecological role and
effects on plant protection and nutrition. eir contribution in improving fitness
can be particularly relevant in the case of semi-extensive tree crops, such as hazel-
nut. In this manuscript, the occurrence and properties of the species Arcopilus
aureus are reviewed, following its finding as a component of the endophytic micro-
biome of hazelnut in the distant geographic and climatic contexts of Poland and
Italy, representing an indication of its widespread association with this plant and a
possible role in protection against biotic adversities.
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1. Introduction

Components of the endophytic phytobiomes establish mutualistic associations with
their hosts where, in exchange of nutrients and habitat, they provide protection against
various biotic and abiotic stresses. eir adaptation to life inside the tissues of other
eukaryotesmight trigger the capacity to synthesize novel bioactive secondarymetabo-
lites through the interaction with the host’s genome (Ekbic et al., 2022; Gakuubi et al.,
2021; Nicoletti & Fiorentino, 2015; Rokas et al., 2020).
During the recent years, an explosion of research focused on the characterization
of endophytes and their occurrence and functions, as well as on their aptitude as
providers of ecosystem services have been observed (e.g. Dimitrova & Nacheva, 2021;
Malinowski & Belesky, 2019; Sumi et al., 2022). Promises of a new green revolution
aiming at the implementation of new techniques, sustainable solutions, and disruptive
innovation trigger increasing interest of researchers all over the world in biodiversity
and in bioprospecting endophytes as an alternative source of bioactive compounds
to be used for industrial applications. Among others, members of Chaetomium and
related genera represent a model of endophytic fungi as a rich source of unique
bioactive metabolites that can be considered for diverse biotechnological deployment
(Rao et al., 2023). is article particularly focuses on the species Arcopilus aureus
(Chivers) X. Wei Wang & Samson (formerly Chaetomium aureum), following the
finding of endophytic isolates from hazelnut (Corylus avellana L.) in the course of
our ongoing studies carried out in Poland and in Italy.

2. From Chaetomium to Arcopilus: A taxonomic excursus on the
Chaetomiaceae and the identification of Arcopilus aureus

e family Chaetomiaceae (Sordariomycetes, Sordariales) was appointed to contain
fungi that create non-stromatic sexual bodies with a membranaceous wall, covered
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by perithecial hairs similar to hyphal outgrows, fasciculate and evanescent asci, and
single-celled, so, brown or gray-brown ascospores; Chaetomium globosum Kunze
was assumed as the type species (Kunze & Schmidt, 1817; Winter, 1885). Using
classical methods, several attempts were made to study morphological details for
species identification. e most relevant features taken into account were the char-
acters of ascomata. Particularly, the structure of the ascomatal hairs was used as the
most important feature in the first monographs, respectively describing 10 species
(Zopf, 1881) and 28 species (Chivers, 1915). e appearance of ascomatal outgrows
together with the shape and size of the sexual bodies and ascospores, in addition to
the conspicuous characteristics, were used as the major separation characteristics by
other taxonomists. According to these features, Skolko and Groves (1953) recognized
53 species, while Ames (1961) described 85 distinct species of Chaetomium.
Over the course of taxonomic redefinicion Chaetomiaceae, the most crucial amend-
ment was made by Josef von Arx. Instead of focusing on the diverse perithecial hairs,
he laid emphasis on the features of asci and ascospores, the presence of germ pores
on ascospores, and the structureso f the ascomatal wall to distinguish species (Rong
& van Warmelo, 1988). According to his taxonomical system, Chaetomium was kept
for species creating ostiolate perithecia covered by relatively well-developed outgrows,
and this feature alloweddiscriminatingChaetomium fromother genera (vonArx et al.,
1986).
Other taxonomical parameters, such as hyphal growth, colony color and size, and
thickness of the hyphae within the colony, have been studied to distinguish species
within Chaetomium (Plomley, 1959; Sharma & Pandey, 2010). Growth dynamics,
colony form, morphology and appearance of mycelium and sexual spores varied
greatly depending on the carbon source. Lignocellulose agar (LCA) and potato dex-
trose agar (PDA) have been pointed as the best media for culturing Chaetomium
due to the flourishing growth of colonies and the appearance of all crucial taxonom-
ical features (Sharma & Pandey, 2010). Chaetomium sensu stricto is characterized
by the creation of globose, ellipsoidal to ovate or obovate perithecia, which most
oen are ostiolate, or non-ostiolate in some species. e teleomorph body wall is
usually formed of textura intricata or epidermoidea stretch, or of textura angularis
in some species; the perithecial outgrows are hypha-like, flexuous, undulate, coiled
to simply branched or dichotomously branched, generally with verrucose stretch,
and so in some species. e asci are clavate or fusiform with eight biseriate or
irregularly arranged sexual spores.e ascospores are limoniform to globose (erratical
in a few species), bilaterally flattened, and usually more than 7 μm in length. An
Acremonium-like asexual morph is formed in some species (Udagawa, 1960; Wang
et al., 2016a, 2016b;Whiteside, 1957). Indeed, recent phylogenetic studies have shown
that several fungi belong to the Chaetomiaceae which are only known for their asexual
morphs and were previously classified in the genera Acremonium, Staphylotrichum,
Humicola, or Trichocladium (von Arx et al., 1984; Wang et al., 2016a, 2016b).
Considering the microscopic features of the teleomorph for defining the species
concept inChaetomium has proven to be challenging, since they arewidely evanescent
and disappear before maturation of the sexual spores. erefore, it is usually recom-
mended to observe hyaline ascospores within asci. For spotting asci, diligent attention
should be paid to the creation of ascomata. It is relevant to make slides from young
perithecium at the precociousness of the culture, usually within two weeks, which we
also did to identify our strains. When the specimens are getting mature for a longer
time, most perithecia become matured and this makes it difficult to notice asci. For
species that form non-ostiolate sexual bodies, hyaline young perithecia are mainly a
good choice for ascus studies (Abdel-Azeem, 2020; Berkson, 1966; Wang et al., 2022).
e high phylogenetic heterogenicity of Chaetomiaceae determined the necessity to
reclassify all taxa employing molecular tools. e ITS region of rDNA is recom-
mended as the best primary barcode for identification and grouping of Chaetomium
species (Lee & Hanlin, 1999). However, it could be assisted by a secondary barcode,
and LSU (D1/D2 domains of the 28S nrDNA), rpb2 (partial RNA polymerase II
second largest subunit), and tub2 (β-tubulin) sequences were proposed as additional
barcodes. Nowadays, fiy genera incorporating 275 species are recognized in Chaeto-
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Figure 1 Arcopilus aureus Tv 121. (A) colony on PDA (a-averse, b-reverse); (B) young perithecium with a thin wall and
characteristic arcuate hairs (arrow); (C) old perithecium; (D) ascospores. Scale bars = 10 μm.

miaceae; Chaetomium is the largest genus, accommodating 43 species (Wang et al.,
2022).
Since Gustav Kunze officially introduced the genus Chaetomium (Kunze & Schmidt,
1817), remarkable progress has been made in the taxonomy of Chaetomiaceae. e
comprehensive usage of molecular tools addressed the phylogenetic relationships
for taxa with similar morphological features, with the imagery of five new genera,
including Arcopilus; this name refers to the arcuate terminal outgrows of perithecia
which characterize most of the members in this genus, including the type species
A. aureus (Wang et al., 2016a).
Despite the revolution following the employment ofmolecular tools, classicalmethods
of identification should still be considered as the first step for classifying new strains.
Our morphological observations were made aer culturing the endophytic isolates
of A. aureus from secondary branches of hazelnut Tv121 (from Motycz near Lublin,
Poland) and A2269N (from the Astroni Nature Reserve near Napoli, Italy) on PDA
(Difco) in darkness at 22 °C. Aer 7 days, the colonies were 30–36 mm in diameter,
depicting yellow, orange to red color with red pigment diffusing into the medium
(Figure 1A).e perithecia were 75–155 μm high and 80–150 μm in diameter, with an
initially bright and thin wall (Figure 1B), then becoming brown and thick (Figure 1C).
Characteristic arcuate hairs were observed, with an incurved apical part, circinate to
coiled (Figure 1B). e ascospores were dark brown when mature, fusiform, elongate
fusiform or limoniform, sometimes bilaterally flattened, with one or two apical germ
pores, (8–10.5(–11) × (5–6(–6.5) μm) at both ends (Figure 1D).
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Identification of isolate Tv121 was also carried out through rDNA-ITS sequencing.
To this end, total genomic DNA extraction from young mycelium taken from pure
culture, PCR amplification, and sequencing were performed according to a previously
published protocol (Zimowska et al., 2021).eoriginal small subunit ribosomalRNA
gene and rDNA-ITS (ITS1 – 5.8S – ITS2) sequence sourced in this study has been
deposited in GenBank with the reference number OR178408. e identification of
the fungal symbiont was acknowledged by checking the homology of this sequence
with other sequences available in GenBank.

3. Occurrence and ecological roles

With a worldwide distribution, species of the family Chaetomiaceae display elevated
phenotypical and ecological diversity; they are mostly saprobic and occur in compost,
soil, seed, dung, indoor environments, and rotting plant materials (Samson et al.,
2019; Wang et al., 2016a). For its part, A. aureus has been diffusely mentioned from
soil, dung, and other miscellaneous substrates (Abdullah & Azzo, 2015; Doveri, 2016;
Kubatova, 2006; Kuter et al., 1983; Lee et al., 2019; Nakashima et al., 1991a, 1991b;
Pornsuriya et al., 2010; Price et al., 1994; Quyet et al., 2018; Taniguchi et al., 1984; von
Arx et al., 1986; Wang et al., 2013, 2016a). It has even been recovered from highly
radioactive polluted soil and forest litter of the prohibited zone around the Chernobyl
nuclear power plant (Ukraine) (Zhdanova et al., 2001) and from lead contaminated
soil in Brazil (da Silva et al., 2018).
More significantly, A. aureus is characterized by a widespread occurrence as a plant
associate. In fact, it has been reported from seeds of pepper and cucumber in the
United States (Skolko & Groves, 1953), oats in Kansas (USA) and Canada (Conners,
1967; Hansing&Hartley, 1966), maize in the Chinese province of Liaoning (Gao et al.,
2005), roots of sugarcane in Cuba (Hernández-Gutiérrez et al., 1995) andChina (Raza
et al., 2019), and bark of the cotton tree (Bombax ceiba) in Pakistan (Abbas et al., 2017).
Some concern has been raised in China for its possible pathogenic aptitude, based on
reports as a leaf spot agent on leaves of pineapple (Ananas comosus) in Hainan (Luo
et al., 2012) and on the medicinal herb Pseudostellaria heterophylla in Guizhou (Yuan
et al., 2021).
Moreover, this species has been identified as an endophyte in omnifarious geographic
and ecological contexts. Particularly, there are records from stalks of bullgrass (Pas-
palum fasciculatum) in Costa Rica (Danielsen & Jensen, 1999), petioles of the Chinese
fan palm (Livistona chinensis) in ailand (Jiaojiao et al., 2016), black pine (Pinus
nigra) in Spain (Martínez-Álvarez et al., 2016), various organs of grapevine in Brazil
(de Faria Silva et al., 2022) and India (Dwibedi & Saxena, 2018), and from leaves and
stems of themedicinal shrub Phlogacanthus thyrsiformis in India (Sharma et al., 2020).
More findings have been reported from Yunnan (China), from leaves of Vaccinium
dunalianum (Fan et al., 2020) and roots of the orchidCypripedium flavum (Zang et al.,
2004). In this region, an isolate from another orchid (Gastrodia elata) was identified
as Arcopilus sp. (Duan et al., 2022); however, a blast in GenBank of its ITS sequence
shows 100% homology with 18 isolates of A. aureus, besides an isolate of Arcopilus
globulus. is latter match may have raised doubts in the authors about the correct-
ness of the classification, which were dispelled considering that this species is now
designated as a synonymofA. aureus (Wang et al., 2022). In a survey carried out on the
longbranch frostweed (Crocanthemum canadense) in Nova Scotia (Canada),A. aureus
was found to represent the most frequent endophytic associate colonizing every kind
of tissues (root, leaf, lower and upper stem) in 56% of the examined plants collected
at five out of six sites (Byers et al., 2021). Not too far geographically, this species was
previously reported as one of four fungi colonizing roots of all the three plant species
examined in the pine barrens of New Jersey, i.e. pitch pine (Pinus rigida), switchgrass
(Panicum virgatum), and rosette grass (Dichanthelium acuminatum), implying a likely
aptitude for a horizontal spread among plants thriving in the same ecosystem (Luo
et al., 2017).
Arcopilus aureus is also part of the endophytic communities of trees of notable eco-
nomic importance, such as olive (Olea europaea) (Nicoletti et al., 2020) and chestnut
(Castanea sativa) (Nicoletti et al., 2021). An endophytic strain from the latter plant has
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been identified in Portugal as a prospective antagonist in the control of bark canker
caused by Cryphonectria parasitica (Coelho et al., 2022). Moreover, an endophytic
isolate from P. nigra reduced the disease progress resulting aer inoculation of the
canker agent Fusarium circinatum on Pinus radiata seedlings, indicating that it can
find application in biological control of this pathogen (Martínez-Álvarez et al., 2016).
Another strain of A. aureus was previously identified as an effective biocontrol agent
of the rice blast pathogen Magnaporthe grisea and the sheath blight pathogen Rhi-
zoctonia solani both in vitro and in vivo. Particularly, its metabolites suppressed
mycelial growth in R. solani and germination of spores and appressorium formation
in M. grisea; moreover, they minimized the disease indexes of rice blast in the field
and rice sheath blight both in the greenhouse and in the field (Wang et al., 2013). Cul-
ture filtrates of an isolate from Guzmania displayed strong inhibitory effects against
Phytophthora infestans, Bipolaris sorokiniana, Fusarium culmorum, and F. oxysporum,
while the bioactivity was moderate against Botrytis cinerea, B. fabae, Pyrenophora
graminea, and Neocosmospora solani. ese inhibitory effects persisted in the ethyl
acetate extract of the culture filtrates (Linkies et al., 2021). Ethyl acetate, hexane, and
methanolic extracts obtained from cultures of a soil strain determined some extent
of inhibition in oospore formation in Pythium aphanidermatum (Pornsuriya et al.,
2010). Finally, a Chinese strain ofA. aureuswas able to inhibit mycelial growth of Phy-
tophthora capsici in dual cultures in vitro and to induce coiling of pathogen’s hyphae.
Moreover, its fermentation broth and crude extract also almost completely inhibited
mycelial growth of P. capsici, while treatment of pepper plants with fermentation
broth activated defense enzymes, such as phenylalanine ammonia lyase, peroxidase,
polyphenol oxidase, increasing their resistance. In addition, the fermentation broth
significantly promoted growth of pepper seedlings, leading to an increase in fresh and
dry weight (Liu et al., 2013).

4. Secondarymetabolites and other biotechnological aspects

By reason of the recent separation from Chaetomium, the production of secondary
metabolites by A. aureus has been considered and reviewed together with other
species of this genus (Zhang et al., 2012). Particularly, a huge research activity has
been carried out on the biochemical properties of C. globosum; over 200 secondary
metabolites have been isolated and identified from isolates of this species, including
terpenoids, alkaloids, tetramic acids, diketopiperazines, steroids, xanthones, bis(3-
indolyl)-benzoquinones, azaphilones, anthraquinones, pyranones, and orsellides,
and many of them present interesting properties, such as anticancer, antimicrobial,
antimalarial, cytotoxic, and antiviral activities (Dwibedi et al., 2023; Rao et al., 2023).
In general, these fungi exhibit potent antimicrobial activities that encourage their use
as biological control agents.
e data concerning secondary metabolites of A. aureus are more limited, and no
information about this aspect was reported in the fundamental revision by Wang
et al., (2016a). However, the analysis of the available literature indicates that the
first bioactive secondary metabolite identified as a product of a strain of this species
was oosporein (3,3′,6,6′-tetrahydroxy-5,5′-dimethyl-2,2′-bi-p-benzoquinone) (Lloyd
et al., 1955). is compound, responsible for the red pigmentation of A. aureus
cultures, was previously known as a product of other fungi, and it has been investigated
as a phytotoxin and a mycotoxin affecting poultry (Cole et al., 1974; Manning &
Wyatt, 1984); later on, it has been shown to exert antiviral and antifungal effects
(Nagaoka et al., 2004; Terry et al., 1992), with the latter reported to increase at acidic
pH (Taniguchi et al., 1984). Although it was not directly extracted, it was considered
as likely responsible for the antifungal effect of culture filtrates and extracts from the
strain examined in the previously mentioned work by Linkies et al. (2021). Moreover,
it has been reported to exert protective effects in plants against aluminum stress based
on its chelating properties (Haruma et al., 2022).
Another quinone derivative, cochlioquinol II, first reported as a phytotoxin from the
Bermuda grass pathogen Bipolaris cynodontis (Lim, 1998), was found to be produced
by an endophytic isolate from grapevine and reported to be responsible for the yellow
pigmentation of this strain, along with riboflavin (de Faria Silva et al., 2022). Better
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known as pigments and for possible application as food colorants are compounds
belonging to the polyketide class of azaphilones (Pimenta et al., 2021), which were
discovered as products of an endophytic strain isolated in Morocco; particularly,
isochromophilone IV and VII, sclerotioramin and sclerotiorin were extracted from
cultures of this strain along with the tricyclic compound SB236050 and the new
resorcinol derivative chaetorcinol (Kabbaj et al., 2015). Extracted from an endophytic
strain from G. elata along with the biosynthetic analogs maristachone B, 8-zinniol
methyl ether, and the novel arcopiniols A-C (Duan et al., 2022), zinniol is another
product which was first characterized as a phytotoxin from several Alternaria and
Phoma species (Cotty & Misaghi, 1984; Sugawara & Strobel, 1986); however, this
biological effect has been questioned aermore recent experimental assessments (Qui
et al., 2010).
It is widely reported that many endophytic fungi can synthesize in vitro products
originally characterized from their host plants (Nicoletti & Fiorentino, 2015). Among
other endophytic fungi isolated from grapevine, a strain of A. aureus was character-
ized as the best resveratrol producer in an Indian study (Dwibedi & Saxena, 2018).
is findingmight have prompt biotechnological application, considering the notable
beneficial effects of this polyphenolic flavonoid on human health, as well as its use as
a pharmacophore.
Finally, an unidentified product (C31H35O8N), obtained from a strain classified as
Chaetomium laterale var. diporum (currently a synonym ofA. aureus), was discovered
to almost totally inhibit mycelial growth of widespread pathogens, such as Sclerotinia
sclerotiorum and Botrytis cinerea, at the concentration of 10 μg mL−1; however, its
antifungal activitywasmuch lowerwhen assessed against other plant pathogenic fungi
(Nakashima et al., 1991a, 1991b).
e limited extent of the available information concerning secondary metabolites of
A. aureus calls for further insights, also in the aim of assessing possible chemotaxo-
nomic relevance supporting species discrimination. Some of the above products were
reported to exert phytotoxic effects; however, the spectrum of their bioactivity should
be determined to establish if this property is general or specific, as well as if the doses
released in vivo can effectively induce damage to the host plants. Moreover, clues
concerning the fungitoxic effects also call for further assessments of the possible role
of some products in defensive mutualism.
Besides the bioactive properties of secondary metabolites, biotechnological applica-
tions concerning isolates of A. aureus have not been substantially exploited so far.
Some isolates have been reported as sources of xylanases (Iizuka & Kawaminami,
1969), cellulases (Ghora & Chaudhuri, 1975), and trehalase (Sumida et al., 1989),
which is not so remarkable, considering that these are general properties of microbial
strains recovered from any kind of environmental and geographical context. With
reference to bioremediation, an isolate of A. aureus isolated in Brazil from semiarid
soil with lead concentrations above regulatory limits exhibited better performance in
laboratory assays in terms of fungal growth in a lead-containing substrate, capability
to use pectin as a carbon origin, as well as basophilic and thermotolerant properties.
Particularly, a reduction of free Pb in soil (61 and 54%, respectively) could be detected
60 days aer inoculation. ese findings support the use of this species as a potential
tool for the bioremediation of contaminated sites (da Silva et al., 2018). Moreover, it
has been proved to be highly tolerant to glyphosate (Hu et al., 2005).

5. Conclusions

eexamination of the available literature concerningA. aureusdepicts its widespread
geographic distribution and frequent occurrence as a plant symbiont, particularly in
the form of an endophytic associate. In this respect, even the limited available data
are indicative of a good adaptation to this ecological role, considering that it has been
recovered from both roots and the above-ground parts of plants of various taxonomic
affiliations. Some clues of the capacity to spread horizontally within heterogeneous
ecological contexts portend an even wider and more pervasive occurrence, which
stimulates further insights aiming at a more thorough assessment of its symbiotic
interactions with the host.
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epresent paper represents the first report of the endophytic association ofA. aureus
with C. avellana, as inferable from the previous reports summarized in our recent
review on endophytic fungi of this plant (Nicoletti & Zimowska, 2023). Indeed, the
obtainable data on the occurrence and functions of endophytic fungi of hazelnut are
scanty, and a good part of them refers to countries outside the European Union,
such as China and Iran. Some published studies mainly concern the perspective of
a pharmaceutical application, starting from the finding that a hazelnut endophytic
strains of Penicillium aurantiogriseum is able to synthesize the antitumor drug taxol
in axenic cultures (Yang et al., 2014). Ongoing studies concerning the metabolomic
profile of our strains of A. aureus could bring new outcomes regarding the potential
biotechnological exploitation of this fungus.
Most importantly, the association of A. aureus with hazelnut calls for further assess-
ments in terms of its role in defensivemutualism.e antagonistic properties resulting
from some published studies and our preliminary evidences support the possible
implication of this fungus in protection of hazelnut from biotic adversities. Indeed,
this crop is expected to face hard times in this respect aer the announcement of
phase-out of copper products in the European Union (Nicoletti et al., 2022). Hence,
all components of the associated microbiome should be carefully evaluated for their
contribution to plant health and fitness. In this respect, it is quite relevant considering
thatChaetomium-like fungi have been already introduced in themanagement of plant
diseases, and even some commercial formulates (e.g. Ketomium®) have been released
in several countries (Soytong et al., 2001).
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